Contracting the Hepatitis C Virus

Hepatitis C Virus pic

Hepatitis C Virus

Robert Hindes, MD, started his career as an infectious diseases consultant at Danbury Hospital and New Milford Hospital in Connecticut. A co-founder of Trek Therapeutics, Robert Hindes, MD, now oversees the development of medicines to treat several acute and chronic viral infections.

Trek Therapeutics primary current focus is on treatments for the hepatitis C virus (HCV). The risk of contracting HCV can be reduced with common sense preventative measures:

1. Avoid exposure to blood. HCV usually spreads when the blood of an infected person enters the bloodstream of an uninfected individual. Individuals who work in the medical profession should wear protective clothing and gear that minimize the chance of direct contact with blood or body fluids.

2. Refrain from sharing personal care products. Razors and toothbrushes may spread the infection through razor cuts or bleeding gums. Even a small amount of blood can infect another person, so individuals should use their own personal care products.

3. Practice safe sex. 

4. Make sure that tattoos and piercings are administered by experienced practitioners using sterilized instruments. Tattoo and piercing parlors that fail to follow appropriate sanitary procedures can spread HCV through the use of contaminated needles. Conduct thorough research on parlors before you get a tattoo or piercing, and make sure the artist you choose can produce his or her license.


Goals of Phase II Clinical Trials

hepatitis C virus


Having previously functioned as an infectious disease consultant at Danbury and New Milford Hospital in Connecticut while teaching at Yale University and New York Medical College, Robert Hindes, MD, serves as the chief medical officer of Trek Therapeutics. In his leadership role with the pharmaceutical developer, Robert Hindes, MD, oversees Phase II clinical trials for a next-generation treatment for hepatitis C virus, with a plan to develop affordable drugs for patients without access to effective therapies..

The primary objective of Phase II clinical trials is to establish the safety and therapeutic efficacy of a drug. Most importantly, companies must use Phase II trials to demonstrate a measurable benefit to the patient. Drugs in Phase II trials must also produce a primary response in the intended target; for example, an anti-cancer drug must actually display anti-cancer properties. Finally, Phase II trials enable researchers to expand the toxicological and pharmacological data collected in Phase I.

In terms of structure, Phase II clinical trials typically recruit approximately 100 to 200 subjects, but this number varies greatly among studies. Due to the relatively small sample sizes, the success of drugs in Phase II trials is assessed by observed differences between the drug(s) being studied and the placebo or active control arm, and generally not by statistical comparisons. Commonly referred to as “pilot” studies or proof-of-concept studies, Phase II trials determine whether a drug is a good candidate for larger, statistically powered Phase III trials in a larger population.

Nucleotide Analogs for the Treatment of Hepatitis C Virus

Trek Therapeutics pic

Trek Therapeutics

A graduate of Rutgers New Jersey Medical School, Robert Hindes, MD, has dedicated over two decades to the study of infectious diseases. He currently oversees the clinical development of innovative hepatitis C medications as chief medical officer at Trek Therapeutics, having previously served as vice president of clinical development at Pharmasset. In that role, Robert Hindes, MD, played a leading role in the development of a nucleotide analog for hepatitis C virus (HCV), which resulted in breakthrough drug regimens for the treatment of the highly prevalent infectious disease.

Nucleotides are one of the key building blocks of the human body. Each comprising a five-carbon sugar, a nitrogenous base, and one or more phosphate groups, the molecules combine in linear polymers to form nucleic acids such as DNA and RNA. Nucleotides indirectly play a role in the fight against infectious diseases.

Certain antiviral drugs, known as nucleotide analogs, are designed to appear to viruses as nucleotides. Because nucleotide analogs have the potential to stop viruses from replicating, they have contributed to effective therapies for viral diseases including HIV and herpes. In the case of HCV, nucleotide analogs can facilitate chain termination regardless of the HCV genotype, encouraging viral suppression while limiting viral resistance. While this strategy amounts to suppressive therapy in the case of HIV, herpes, and hepatitis B, the combination of viral suppression and a high barrier to resistance, along with unique properties of the hepatitis C virus, allow patients with HCV infection to be cured.